Targeted Silencing of S100A8 Gene by miR-24 to Increase Chemotherapy Sensitivity of Endometrial Carcinoma Cells to Paclitaxel
نویسندگان
چکیده
BACKGROUND The objective of this study was to determine whether miR-24 can regulate malignant proliferation and chemotherapy sensitivity of EC cells by targeted silencing of the S100 Calcium Binding Protein A8 (S100A8) gene. MATERIAL AND METHODS The expression of miR-24 in EC tissues was detected by quantitative real-time PCR. The proliferation ability and chemotherapy sensitivity were analyzed by MTT assay. Bioinformatics software was used to predict some potential target genes of miR-24. Luciferase activity assay was used to verify the relationship between target genes and miR-24. S100A8 protein expression was detected by Western blot analysis. RESULTS The low expression of miR-24 in EC tissues compared with normal control tissues suggests miR-24 might play a role in tumorigenesis of EC. EC HEC-1A cells were transfected with miR-24 agonist (agomiR-24) to up-regulate the expression of miR-24. Up-regulation of miR-24 inhibited the cell proliferation and advanced the chemotherapy sensitivity to paclitaxel in HEC-1A cells significantly. We used several types of bioinformatic software to predict that miR-24 could specifically combine with the 3' untranslated region (3'UTR) of the S100A8 gene, and this prediction was verified by Western blot and luciferase activities assay. The regulation effects of miR-24 enhancement on cell proliferation and chemotherapy sensitivity were largely reversed by S100A8 up-regulation. CONCLUSIONS miR-24 acts as a tumor-suppressing gene to inhibit malignant proliferation and advance chemotherapy sensitivity to paclitaxel in EC by targeted silencing of the S100A8 gene.
منابع مشابه
Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9
Paclitaxel has been widely used in the treatment of breast cancer. However, the development of drug resistance often increases the failure of chemotherapy. Growing evidence has reported the significant role of microRNAs (miRs) in drug resistance. The present study identified that miR-24 was significantly downregulated in paclitaxel-resistant (PR) breast cancer patients and in MCF-7/PR human bre...
متن کاملEvaluation of miR-34a Effect on CCND1 mRNA Level and Sensitization of Breast Cancer Cell Lines to Paclitaxel
Background: A growing body of literature has revealed the effective role of miR-34a, as a tumor suppressor and regulator of expression of multiple targets in tumorigenesis and cancer progression. This study aimed at evaluating the potential effects of miR-34a alone or in combination with paclitaxel on breast cancer cells. Methods: After miR-34a transduction by lentiviral vectors in two MCF-7 an...
متن کاملMicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs
BACKGROUND Accumulating studies reveal that aberrant microRNA (miRNA) expression can affect the development of chemotherapy drug resistance by modulating the expression of relevant target proteins. The aim of this study was to investigate the role of miR-133b in the development of drug resistance in ovarian cancer cells. METHODS We examined the levels of miR-133b expression in ovarian carcino...
متن کاملمهار بیان ژن GFP به وسیله تداخل RNA (RNAi) در دودمان سلولی کارسینومای جنینی P19
Introduction: RNA interference (RNAi) is a phenomenon of gene silencing that uses double-stranded RNA (dsRNA), specifically inhibits gene expression by degrading mRNA efficiently. The mediators of degradation are 21- to 23-nt small interfering RNAs (siRNA). The use of siRNAs as inhibitors of gene expression has been shown to be an effective way of studying gene function in mammalian cells. Ai...
متن کاملStrategies for Molecularly Enhanced Chemotherapy to Achieve Synthetic Lethality in Endometrial Tumors with Mutant p53
Serous uterine endometrial carcinomas are aggressive type II cancers with poor outcomes for which new treatment strategies are urgently needed, in particular, strategies that augment sensitivity to established chemotherapy regimens. The tumor suppressor gene TP53 is dysregulated in more than 90% of serous tumors, altering master regulators of the G2/M cell cycle checkpoint in unique and predict...
متن کامل